Keramati, Keayvan keayvan.keramati@alumnos.upm.es

Actividades

A Digital Twin for Smart Manufacturing of Structural Composites by Liquid Moulding

  • Fernández-León, J
  • Keramati, K
  • Baumela, L
  • González, C

International Journal Of Advanced Manufacturing Technology (p. 4679-4697) - 18/1/2024

https://doi.org/10.1007/s00170-023-12637-x Ver en origen

  • ISSN 14333015

A deep encoder-decoder for surrogate modelling of liquid moulding of composites

  • KERAMATI, KEAYVAN

Engineering Applications Of Artificial Intelligence - 1/4/2023

10.1016/j.engappai.2023.105945 Ver en origen

  • ISSN 09521976

On the Classification Problem of Manufacturing Disturbances by Using Physics-based Machine Learning

  • KERAMATI, KEAYVAN

15/12/2022

  • iMarina

A Machine Learning Strategy for Race-Tracking Detection During Manufacturing of Composites by Liquid Moulding

  • Fernandez-Leon, Joaquin
  • Keramati, Keayvan
  • Garoz, David
  • Baumela, Luis
  • Miguel, Carlos
  • Gonzalez, Carlos;

Integrating Materials And Manufacturing Innovation (p. 296-311) - 1/1/2022

10.1007/s40192-022-00263-6 Ver en origen

  • ISSN 21939764

Este/a investigador/a no tiene libros.

The Effect of Air with Supplementary Oxygen on Power and Fuel Consumption of Spark-Ignition Engine

  • KERAMATI, KEAYVAN

1/8/2018

  • iMarina

3D Numerical Investigation of Ignition Timing Effects on the SI Engine Exergy

  • KERAMATI, KEAYVAN

1/8/2018

  • iMarina

Exergy Analysis of a Hybrid System Including a Solar Panel, Fuel Cell, and Absorption Chiller

  • KERAMATI, KEAYVAN

1/8/2018

  • iMarina

Optimization of a Renewable Hybrid System Including an Absorption Chiller, Fuel Cell and Solar Panel by Exergy Analysis

  • KERAMATI, KEAYVAN

1/1/2015

  • iMarina

Artificial Intelligent Method to Predict the Defects During the Resin Transfer Molding

  • KERAMATI, KEAYVAN

26/6/2022

  • iMarina

THE COMPARISON OF DIFFERENT MACHINE LEARNING METHODS TO PREDICT THE TYPE OF FLUID FLOW FRONT SHAPE IN THE COMPOSITE MANUFACTURING PROCESS IN THE PRESENCE OF RACE-TRACKING WITH DIFFERENT PROPERTIES

  • Keramati K
  • Fernández-León J
  • Mocerino D
  • Baumela L
  • Giraldo CM
  • González C

Eccm 2022 - Proceedings Of The 20th European Conference On Composite Materials: Composites Meet Sustainability (p. 1021-1028) - 1/1/2022

  • iMarina

A DEEP ENCODER-DECODER NEURAL NETWORK FOR SURROGATE MODELLING OF LIQUID MOULDING OF COMPOSITES

  • Fernandez-Leon J
  • Keramati K
  • Baumela L
  • Gonzalez C

Eccm 2022 - Proceedings Of The 20th European Conference On Composite Materials: Composites Meet Sustainability (p. 792-798) - 1/1/2022

  • iMarina

Machine learning model to predict the type and properties of race-tracking during the liquid composite moulding in manfacturing process

  • KERAMATI, KEAYVAN

Mmldt-Cset 2021 Conference Proceedings - 26/9/2021

  • iMarina

Este/a investigador/a no tiene documentos de trabajo.

Este/a investigador/a no tiene informes técnicos.

Uso de Micromixers para una combustión continua estable de hidrógeno para una aviación libre de carbono - Estudio computacional

  • BHATT, DAVID SHARAD (Miembro del equipo de trabajo)
  • Ahmadi, Ghazaleh (Participante)
  • KERAMATI, KEAYVAN (Participante)
  • KHALIFEHEI, MORTEZA (Miembro del equipo de trabajo)
  • RUBIO CALZADO, GONZALO (Participante)
  • CHAVEZ MODENA, MIGUEL (Participante)
  • VICENTE BUENDIA, JAVIER DE (Participante)
  • GONZALEZ GUTIERREZ, LEO MIGUEL (Participante)
  • VALERO SANCHEZ, EUSEBIO (Investigador principal (IP))
  • RODRIGUEZ ALVAREZ, Daniel (Investigador principal (IP))
... Ver más Contraer

Ejecución: 01-12-2022 - 30-11-2024

Tipo: Nacional

Importe financiado: 230000,00 Euros.

  • iMarina

Este/a investigador/a no tiene tesis dirigidas.

Este/a investigador/a no tiene patentes o licencias de software.

Última actualización de los datos: 1/12/24 10:27